
	

Version 24 September 2021 - [[Draft – Mark Graph – mark dot the dot graph at gmail dot com – @Mark_Graph on twitter]] 1

Python 3 – Cheat Sheet

The absolute basics

Comments
from the hash symbol to the end of a line.

"""A docstring, is the first statement in a
module, function, class, or method. Enclosed in
triple quotes, it describes what the code does."""

"""Stand alone string literals occurring elsewhere
in Python code are also used for documentation."""

Line breaks and indents
• Typically, a python statement must be on one line
• Bracketed code -- () [] {} -- can run across lines
• A backslash (\) before the end of a line will extend a

statement over a line. But brackets are better.
Accidental spaces after backslash are problematic.

• Semicolons (;) separate more than one statement
on a line. But one statement per line is best practice.

• Try to limit all lines to a maximum of 79 characters.
While longer lines will compile, they are hard to read

• Code blocks are indented by four spaces.
• Never use tabs for indenting. Using tabs for indents

can result in hard-to-find errors.

Version
To see what version of python you are running.
import platform
print(f"Python: {platform.python_version()}")

Python is object-oriented

Objects
Everything is an object in Python. Every entity has data
(or attributes) and functionality (methods). For example,
all objects have a _doc_ attribute that holds the
docstring defined in the source code. Because the
number 5 is an instance of the int class, we can see the
int class docstring using dot-notation as follows.
print((5).__doc__)
print(int.__doc__) # same result as previous line
Note: we bracket the 5 so the interpreter knows we want
the 5 instance. Without brackets it is invalid syntax.

dir(object) yields a list of all the attributes and methods.
print(dir(int)) # from the class identifier
print(dir(5)) # from an instance
x = 5; print(dir(x)) # from an assigned identifier

Identifiers
Variables (more accurately identifiers) in Python are not
containers or locations in memory. They are references
or pointers to an object. Identifiers are assigned and
reassigned with = (equals). They are deleted with del.
x = "Hello" # x refers to a string object
del x # removes the reference not the object
The Python interpreter can automatically delete an
instance when there are no longer any live references to
that instance (but it may not, so don’t rely on it).

Dynamic typing
Objects are strongly typed. Identifiers are not typed.
Identifiers can be created whenever as needed. They
can reference differently typed objects without problem.
x = "a string" # x references a string
x = [1, 2, 3] # now it references a list
x = 19 # now it references an integer
print(type(x)) # <class 'int'>
isinstance(x, int) # True

Immutable and mutable objects
Some objects are immutable (int, float, string, bool,
tuple, frozenset). Immutable objects cannot be changed
after they have been created. Most objects are mutable
(including: list, set, dictionary, numpy arrays, etc.)

Operators

Arithmetic Operations
a + b # addition
a – b # subtraction
a * b # multiplication
a / b # division
a // b # floor division (rounds down)
a % b # modulus
a ** b # exponentiation
-a # unary negation
+a # unary plus (unchanged)

Bitwise operators
a & b # bitwise AND
a | b # bitwise OR
a ^ b # bitwise XOR
a << b # left bit shift
a >> b # right bit shift
~a # bitwise complement

Assignment operators
a = 4 # a refers to the int instance 4
a = b # a now refers to the same
 # object as the identifier b
a += 2 # assignment operator: a = a + 2
a, b, c = 1, 2, 3 # unpacked tuple assignment
Note: many assignment ops: -=, +=, /=, *=, %=, //=, **=

Boolean comparisons
a == b # a equals b
a != b # a not equal to b
a < b # a less than b
a > b # a greater than b
a <= b # a less than or equal to b
a >= b # a greater than or equal to b
a < b <= c # range comparisons!

Boolean operators: and, or, not
(a < 6) and (b > 4) # logical and
(a < 6) or (b % 2 == 0) # logical or
not (a < b) # logical not

Object identity – is (also: is not)
x = 1; x is 1 # True – same object
[1, 2] == [1, 2] # True – same values
[1, 2] is [1, 2] # False – different objects

	

Version 24 September 2021 - [[Draft – Mark Graph – mark dot the dot graph at gmail dot com – @Mark_Graph on twitter]] 2

Membership – in (also: not in)
1 in [1, 2, 3] # True
4 not in [1, 2, 3] # True
Note: this test works for lists, strings, tuples, sets, and
dictionaries (where it checks the keys).

Numeric objects (all immutable)

Integers (class: int)
x = 1 # int – integers – any size
Any number without a decimal point. Integers in Python
3 are of unlimited size. While Python 2 had a long type
for arbitrary sized integers, this no longer exists.

Floating point numbers (class: float)
x = 1.0 # float – real numbers
Double precision, 64-bit approximation of real numbers,
includes "not a number", infinity and negative infinity.
x = float('nan') # not a number
x = float('inf') # infinity
x = -float('inf') # negative infinity
x = float('inf') / float('inf')# not a number
x = 0 * float('inf') # not a number
6.0 < float('inf') # True

Trap: Floating points don't always behave as expected –
issues with fractional decimal approximation in base 2.
0.5 + 0.75 == 1.25 # True
0.1 + 0.2 == 0.3 # False
Hint: use the Python decimal module for accurate
floating-point maths with user alterable precision.

Complex numbers (class: complex)
z = 1 + 4j # complex – complex numbers
z = complex(1, 4) # same as above
print(z.real, z.imag) # prints 1.0, 4.0
Complex numbers have a real and imaginary part. The
imaginary part is written with a j suffix.

Booleans (class: bool, which is a subclass of int)
x = True # bool – Boolean True/False
issubclass(bool, int) # True
int(True) # 1
Two instances of Boolean type: True and False.

Lists (class: list)

List (mutable, indexed, iterable, ordered container)
Lists are Python's array-like built-in type.
a = [] # the empty list
a = ['dog', 'cat', 'bird'] # simple list
a = [[1, 2], ['a', 'b']] # nested lists
a = [1, 2, 3] + [4, 5, 6] # list concatenation
a = [1, 2, 3] * 4 # list replication
a = list(other_type) # conversion
Note: list elements can be of different types

Size of lists – use len() function
simple_list = [1, 2, 3]
len(simple_list) # list size is 3
list_wth_sublists = [1, 2, [3, 4]]
len(list_wth_sublists) # top list size is 3

Indexed with integers from 0 to (length-1)
my_list = ['dog', 'cat']
print(my_list [0]) # prints 'dog'
my_list [1] = 'bird' # now ['dog', 'bird']
my_list.append('bat') # now ['dog', 'bird', 'bat']
Trap: use .append(item) to extend a list. You can only
use assignment to replace existing elements.

Negative indexed from the other end of the list
my_list = ['dog', 'cat', 'fish']
print(my_list[-1]) # prints last element 'fish'
print(my_list[-2]) # prints 2nd last element 'cat'

Checking list membership: in
if 'dog' in my_list:
 print('I found the dog')

if 'bat' not in my_list:
 print('A bat is missing')

Iterating lists
for item in my_list:
 print(item)

for index, item in enumerate(my_list):
 print(index, item)

Key list methods
Method What it does
l.append(x) Add x to end of list
l.clear() Remove all elements from list
l.copy() Return a shallow copy of the list l
l.count(x) Count the number of times x is

found in the list
l.extend(other) Append items from other
l.index(x) Get index of first x occurrence;

An error if x not found
l.insert(pos, x) Insert x at position
l.pop([pos]) Remove last item from list (or

item from pos);
An error if empty list

l.remove(x) Remove first occurrence of x;
An error if no x

l.reverse(x) In place list reversal
l.sort() In place list sort

List slicing
General format
x[start:stop] # one colon
x[start:stop:step] # two colons
If the "start" is not given, it assumed to be zero.
If the "stop" is not given, is assumed to be the list length.
If the "step" is not given, it is assumed to be one.

Examples
x = [0, 1, 2, 3, 4, 5, 6, 7, 8] # play data
x[2] # 3rd element - reference not slice
x[1:3] # 2nd to 3rd element [1, 2]
x[:3] # the first three elements [0, 1, 2]
x[-3:] # last three elements
x[:-3] # all but the last three elements
x[:] # every element of x – copies x
x[1:-1] # all but first and last element
x[::3] # [0, 3, 6] 1st then every 3rd
x[1:5:2] # [1, 3] start 1, stop >= 5, by every 2nd
x[::-1] # every element of x in reverse order
Note: All Python sequence types support the above
index slicing (strings, lists, tuples, bytearrays, buffers)

	

Version 24 September 2021 - [[Draft – Mark Graph – mark dot the dot graph at gmail dot com – @Mark_Graph on twitter]] 3

Deleting elements from a list
x.remove('fish') # remove first occurrence from x
y = x.pop() # return and remove last element
del x[2] # remove third element from x
del x[-3:] # delete the last three elements

Tuples (class: tuple)

Tuples (immutable, indexed, ordered container)
Tuples are immutable lists. They can be searched,
indexed, sliced and iterated much like lists. List methods
that do not change the list also work on tuples.
a = () # the empty tuple
a = (1,) # note comma # one item tuple
a = (1, 2, 3) # multi-item tuple
a = ((1, 2), (3, 4)) # nested tuple
a = tuple(['a', 'b']) # conversion

Note: the comma is the tuple constructor, not the
parentheses. The parentheses, arguably, add clarity.
a = 1, 2, 3 # this is also a tuple
a = 1, # this is a tuple too

Tuple packing and unpacking
a = 1, 2, 3 # tuple packing
x, y, z = a # tuple unpacking
a, b = 1, 2 # tuple packing and unpacking
print(x, y, z) # 1 2 3

Unpacking with * (the unpacking operator)
a, *b, c = (1, 2, 3, 4, 5) # a=1, b=[2,3,4] c=5
a, b, *c = [1, 2, 3, 4, 5] # a=1, b=2 c=[3,4,5]
f = [1, 2, *[3, 4, 5]] # f = [1, 2, 3, 4, 5]
f = (1, 2, *(3, 4, 5)) # f = (1, 2, 3, 4, 5)
func(*[a, b, 3]) # same as func(a, b, 3)
*b, = [1, 2] # note comma # same as b = [1, 2]
print(*sequence, sep=', ')
Note: tuple unpacking works with all iterable objects.
Note: the unpacking operator is sometimes called splat

The Python swap identifier idiom
a, b = b, a # no need for a temp variable
This uses tuple packing/unpacking to achieve its magic.

The Python underscore (_) idiom
By convention, unnecessary values when unpacking a
tuple are assigned to the _ identifier. This idiom is often
used with functions that return tuples.
_, u, v = some_function_that_returns_a_tuple()
_, x, _ = another_function_returning_a_tuple()

Strings (class: str)

String (immutable, ordered, iterable, characters)
A Python string (str) is an immutable list of characters,
stored in Unicode. [Note: There is also a bytes type.]
s = 'string'.upper() # 'STRING'
s = "fred" + "was" + "here" # plus concatenation
s = 'fred' 'was' 'here' # space concatenation
s = "spam" * 3 # replication
s = str(x) # conversion

Note:
• 'single' or "double" quotes. Multiline strings in

"""these triple quotes""" or '''these triple quotes'''.
• "\"" for quotes (but " ' " or ' " ' is often easier to read).
• Escape sequences: "\n" is newline; "\t" is tab; "\r" is

return; "\\" for backslash;

String literal prefixes (b, f, r, u)
bytes_data = b'ascii bytes' # bytes type not str
format_str = f'{5 - 7}' # '-2'
raw_str = r'raws have different \ escape rules'
unicde_str = u'encoded as Unicode' ' so is this'
Note: Upper- or lower-case prefixes allowed.

Iterating/searching strings
for character in 'str': pass
for index, character in enumerate('str'): pass
if 'red' in 'Fred': print ('Fred is red')

String methods (not a complete list)
capitalize, center, count, decode, encode, endswith,
expandtabs, find, format, index, isalnum, isalpha, isdigit,
islower, isspace, istitle, isupper, join, ljust, lower, lstrip,
partition, replace, rfind, rindex, rjust, rpartition, rsplit,
rstrip, split, splitlines, startswith, strip, swapcase, title,
translate, upper, zfill

String constants (not a complete list)
from string import *
print ([digits, hexdigits, ascii_letters,
 ascii_lowercase, ascii_uppercase,
 punctuation])

Printing numbers and identifiers
As Python has evolved, the way in which numbers and
identifiers are printed has changed a few times.
In Python 3.6 a new and much better approach known
as f-strings (formatted strings) was adopted.
Hint: Always use the f-strings approach.

Original string formatting (using % operator)
print ("It %s %d times" % ('occurred', 5))
prints: 'It occurred 5 times'
import math
'%f' % math.pi # '3.141593'
'%.2f' % math.pi # '3.14'
'%.2e' % 3000 # '3.00e+03'
Note: Never use the old % operator for strings. It was
included here, just in case you see it in old python code.

Then string formatting using the format method
import math
'Hello {}'.format('World') # 'Hello World'
'{}'.format(math.pi) # ' 3.14159265359'
'{0:.2f}'.format(math.pi) # '3.14'
'{0:+.2f}'.format(5) # '+5.00'
'{:.2e}'.format(3000) # '3.00e+03'
'{:0>3d}'.format(5) # '005' (left pad)
'{1}{0}'.format('a', 'b') # 'ba'
'{num:}'.format(num=7) # '7' (named args)
Note: Never use the .format() method. It was included
here, just in case you see it in old python code.

	

Version 24 September 2021 - [[Draft – Mark Graph – mark dot the dot graph at gmail dot com – @Mark_Graph on twitter]] 4

Now everyone uses f-strings to format strings
f'Hello {"World"}'. # 'Hello World'
my_name = 'Bryan'
f'Hello {my_name}' # 'Hello Bryan'
f'{my_name.lower()}' # 'bryan'
f'{"right":->10}' # '-----right'
f'{"left":-<10}' # 'left------'
f'{"centre":-^10}' # '--centre--'
import math
f'π={math.pi}' # 'π=3.141592653589793'
f'π={math.pi:0.3f}' # 'π=3.142'
f'π={math.pi:0.2e}' # 'π=3.14e+00'
f'{1000000:,}' # '1,000,000'
f'{1000000:_.2f}' # '1_000_000.00'
f'{0.251342:.1%}' # '25.1%'
f'{365:+}' # '+365'
f'{-365:+}' # '-365'
f'Route {37 + 51 - 22}' # 'Route 66'
f'Leading zeros {12:0>5}' # 'Leading zeros 00012'
f'Like above {-12:+05}' # 'Like above -0012'
f'{6:b}' # '110' # binary
f'{127:o}' # '177'. # octal
f'{60000:x}' # 'ea60' # hex
f'{66:c}' # 'B'. # character

Indexing and slicing strings
Strings are a list of characters. They can be indexed and
sliced in the same way as other Python lists.
s = 'Alphabet soup'
s[0] # 'A'
s[-1] # 'p'
s[:5] # 'Alpha'
s[-4:] # 'soup'
s[::-1] # 'puos tebahplA'

Dictionaries (class: dict)

Dictionary (indexed, ordered, map-container)
A dict is the Python hash-map or associative array type.
It is a mutable hash map of unique key/value pairs. Prior
to Python 3.7, dictionaries were unordered. From Python
3.7, the dictionary keys are maintained and returned in
insertion order.

Create a dictionary
a = {} # empty dictionary
a = {1: 1, 2: 4, 3: 9} # simple dict
a = dict(x) # convert paired data

Create from a list
l = ['alpha', 'beta', 'gamma', 'delta']
a = dict(zip(range(len(l)), l))

Create from a comma separated paired string
s = 'a=apple,b=bird,c=cat,d=dog,e=egg'
a = dict(i.split("=") for i in s.split(","))
{'a': 'apple', 'c': 'cat', 'b': 'bird',
'e': 'egg', 'd': 'dog'}
Note: dictionary keys must be of an immutable type.
They do not need to be all of the same type.

Add a key/value pair to a dictionary
d['key'] = 'value'

Retrieve value using a key
x = d['key'] # exception raised if key missing
x = d.get('key', 'default value if key missing')

Change value using a key
d['key'] = 'new value'

Delete a key/value pair from a dictionary
x = d.pop('key')
del d['key']

Iterating a dictionary
for key in dictionary:
 print (key)

for key in dictionary.keys():
 print(key)

for key, value in dictionary.items():
 print (key, value)

for value in dictionary.values():
 print(value)

Searching a dictionary
if key in dictionary: # test if key in dictionary
 print (key)

if value in dictionary.values():
 print(f'{value} found')

The size of a dictionary
size = len(d)

Dictionary methods (not a complete list)
Method What it does
d.clear() Remove all items from d
d.copy() Shallow copy of dictionary
d.get(key[, def]) Get value else default
d.items() Dictionary's (k,v) pairs
d.keys() Dictionary's keys
d.pop(key[, def]) Get value else default; remove

key from dictionary
d.popitem() Remove and return the last (k,

v) pair from a dictionary
d.setdefault(k[,def])) If k in dict return its value

otherwise set def
d.update(other_d) Update d with key:val pairs

from other
d.values() The values from dict

Dictionary unpacking
Dictionaries can be unpacked with ** to key=value pairs
when functions are called.
d = {'a': 1, 'b': 2, 'c': 3}
s = some_function(**d)

The keys of a dictionary can be unpacked to a list, etc.
key_list = [*d]
key_tuple = *d,
key_set = {*d}

The key/value pairs of a dictionary can be unpacked into
another dictionary.
expanded = {99: 'more', **d, 100:'and another'}

Merging two or more dictionaries
merged = a.update(b)
merged = {**a, **b, **c} # dictionary unpacking
merged = a | b # from Python 3.9

	

Version 24 September 2021 - [[Draft – Mark Graph – mark dot the dot graph at gmail dot com – @Mark_Graph on twitter]] 5

Trap: if the second dictionary has keys in common with
the first dictionary, these key/value pairs will overwrite
those from the first dictionary.

Sets (class: set)

Set (unique, unordered container)
A Python set is an unordered, mutable collection of
unique hashable objects.
a = set() # empty set
a = {'red', 'white', 'blue'} # simple set
a = set(x) # convert to set
Trap: {} creates an empty dict, not an empty set

Iterating a set
for item in set:
 print(item)

Searching a set
if item in set:
 print(item)

if item not in set:
 print(f'{item} is missing from our set')

The size of a set
size = len(my_set)

Set methods (not a complete list)
Method What it does
s.add(item) Add item to set
s.remove(item) Remove item from set. Raise

KeyError if item not found.
s.discard(item) Remove item from set if present.
s.pop() Remove and return an arbitrary

item. Raise KeyError on empty
set.

s.clear() Remove all items from set
s.copy() Get shallow copy of set
s.isdisjoint(o) True if s has not items in

common with other set o
s.issubset(o) Same as set <= other
s.issuperset(o) Same as set >= other
s.union(o[, ...]) Return new union set
s.intersection(o) Return new intersection
s.difference(o) Get net set of items in s but not

others (Same as set – other)

Frozenset (class: frozenset)
Similar to a Python set above, but a frozenset is
immutable (and therefore hashable). It can be used as a
dictionary key.
f = frozenset(s) # convert set
f = frozenset(o) # convert other

Other collections

Collections module
There are many more data types that can be imported.
From the collections module you can import (for
example): Counter, deque (double ended queue) and
namedtuple.

Program flow control

Code blocks
A code block (the body of a function, a loop, etc.) starts
with indentation and ends with the first unindented line.
The indents are always four spaces. Never use tabs.
Hint: set your editor to replace tabs with four spaces.

Assert – or die trying – for development code only
assert x > 0 # ensure a condition
assert False # always fails

import sys
if not x > 0:
 sys.exit(s) # production safe
If the conditional fails, assert raises an AssertionError
Trap: assert statements are ignored when Python is run
in optimised mode. While useful for testing, assert
statements should not be used in production code.
Hint: If program termination is required in production
code, import the sys module and call sys.exit().

Ternary statements
x = y if a > b else z
r = a if x in y else b if u == v else c # nested
z = (func1 if x > 6 else func2)(arg1, arg2) # wow
Hint: prefer the one-line ternary statement over the four
line if-else control structure for conditional assignment.

If - flow control
if condition: # for example: if x < 5:
 statements

elif condition: # optional – and can be multiple
 statements

else: # optional
 statements
Hint: multiple nested if/elif statements can be hard to
read. There is almost always a better way to code these
beasts (for example a dictionary lookup table).

For – flow control
for x in iterable:
 statements

 if conditional:
 continue # go back to the start

 if conditional:
 break # exit the loop

else: # optional completion code
 statements
Trap: break skips the else completion code
Useful: pass is a statement that does nothing

	

Version 24 September 2021 - [[Draft – Mark Graph – mark dot the dot graph at gmail dot com – @Mark_Graph on twitter]] 6

Common for-loop patterns
for i in range(0, 10): pass
for i, value in enumerate(list_of_items): pass
for a, b in zip(first_list, second_list): pass
for x, y, z in zip(list1, list2, list3): pass

for element in set_: pass

for key in dictionary: pass
for key in dictionary.keys(): pass # same as above
for value in dictionary.values(): pass
for key, value in dictionary.items(): pass
Hint: for-loops are often not the best solution in python.
Trap: The for i in range(len(x)): pattern is particularly
pernicious. Some consider it a code-smell.

Rather than a for-loop, think about using a list
comprehension, a generator expression, a dictionary
comprehension, a set comprehension, or even using the
map() function. More to come on these options.
u = [do_something_with(i) for i in list_of_items]
v = (do_something_with(i) for i in list_of_items)
w = {i: function(i) for i in iterable}
s = {exp_with_i for i in iterable if condition}
Note: all of the comprehensions and generator
expressions can include conditional statements, like the
set comprehension example above

While – flow control
while condition:
 statements
 # break and continue can be used here too

else: # optional completion code
 statements

Common while-loop patterns
while container: # an empty container is False
 element = container.pop()
 # do something with this element

Exceptions – flow control
try:
 statements

except (tuple_of_errors): # can be multiple
 statements

else: # optional no exceptions
 statements

finally: # optional all
 statements

Raising exceptions
raise TypeError('function expects a string '
 f'but it got a {type(x)}')

Creating new errors
class MyError(Exception):

 def __init__(self, value):
 self.value = value

 def __str__(self):
 return repr(self.value)

Common exceptions (not a complete list)
Exception Why it happens
AsserionError Assert statement failed
AttributeError Class attribute assignment or

reference failed
IOError Failed I/O operation
ImportError Failed module import
IndexError Subscript out of range
KeyError Dictionary key not found
NameError Name not found
TypeError Value of the wrong type
ValueError Right type but wrong value
Hint: avoid creating your own subclassed exceptions.
Try and use an existing exception if at all possible.

With – using a context manager
Some classes have been written to return a context
manager that handles exceptions behind the scene and
free-up or close a resource when it is finished.

General form
with object_that_returns_a_cm() [as identifier]:
 do_something(identifier)
 # when done, close/free-up the resource

File IO is a good example.
with open("test.txt", 'w', encoding='utf-8') as f:
 f.write("This is an example\n")
 # when we exit the with code block,
 # the file will be closed automatically.

Classes that are context managers will have
implemented __enter__() and __exit__() methods.

Truthiness

Truthiness
Many Python objects are said to be "truthy", with an
inbuilt notion of "truth".
False True
None
0
int(False) # à 0

Any number other than 0
int(True) # à 1

""
the empty string

' ', 'fred', "False", 'None', '0', '[]'
all other strings

() [] {} set()
empty containers

[None] (False,) [0] [""]
non-empty containers,
including those containing
False, None or zero.

Trap: Not all objects follow this convention. For
example, numpy arrays, and pandas DataFrames and
Series do not follow the empty container convention.

It is pythonic to use the truth of container objects.
if container: # test not empty
 # do something

while container: # common looping idiom
 item = container.pop()
 # process item

	

Version 24 September 2021 - [[Draft – Mark Graph – mark dot the dot graph at gmail dot com – @Mark_Graph on twitter]] 7

Built-in functions

Key built-in functions include … (not a complete list)
Function What it does
abs(num) Absolute value of num
all(iterable) True if all are True
any(iterable) True if any are True
assert(condition) Throw an error if condition fails
bytearray(source) A mutable array of bytes
bool(obj) Get the truthiness of the object
callable(obj) True if obj is callable
chr(int) Character for ASCII int
complex(re[, im]) Create a complex number
divmod(a, b) Get (quotient, remainder)
enumerate(seq) Get an enumerate object, with

next() method returns an (index,
element) tuple

eval(string) Evaluate an expression
float(x) Convert from int/string
getattr(obj, str) Like obj.str
hasattr(obj, str) True if obj has attribute
hex(x) From int to hex string
id(obj) Return unique (run-time)

identifier for an object
int(x) Convert from float/string
isinstance(o, c) Eg. isinstance(2.1, float)
len(object) Number of items in x; x is string,

tuple, list, dict
list(iterable) Make a list
long(x) Convert a string or number to a

long integer
max(a, b)
max(iterable)

What it says on the tin

min(a, b)
min(iterable)

Ditto

next(iterator) Get next item from an iter
open(name[,mode]) Open a file object
ord(character) Opposite of chr(int)
pow(x, y) Same as x ** y
print (objects) What it says on the tin
range(stop)
range(start, stop)
range(fr, to, step)

integer list; stops < stop
default start=0;
default step=1

repr(object) Printable representation of an
object

reversed(seq) Get a reversed iterator
round(n[, digits]) Round to number of digits after

the decimal place
setattr(obj, n, v) Like obj.n = v #name/value
sorted(iterable) Get new sorted list
str(object) Get a string for an object
sum(iterable) Sum list of numbers
type(object) Get the type of object
zip(x, y[, z]) Return a list of tuples

Importing modules

Modules
Modules open up a world of Python extensions. Access
to the functions, identifiers and classes of a module
depends on how the module was imported.
import math # math.cos(math.pi/3)
import math as m # m.cos(m.pi/3)
from math import cos, pi # cos(pi/3)
from math import * # log(e)
Hint: It is best to avoid global imports (last line above).

There are hundreds of thousands of python packages
available for import. Frequently used packages include:
• os – operating system interface
• sys – system parameters and functions
• pathlib – file system interface
• datetime – for dates and times
• re – for regular expressions / pattern matching
• math – for maths
• requests – access the internet
• scrapy, selenium – web crawling/web scraping
• beautifulsoup4 – web scraping
• flask – lite-weight web server
• scipy – linear algebra and statistics
• statsmodels – classical statistical models
• PyStan, PyMC3, ArviZ – Bayesian models
• numpy – for linear algebra (import as np)
• pandas – for data manipulation (import as pd)
• matplotlib.pyplt – for charts and graphs (as plt)
• SQLAlchemy – database access

Note: you may need to install a module package on your
system before you can use it in Python. From the
operating system command line you can use pip or
conda, depending on how your system was set-up.

Writing your own functions (basic)

Boilerplate code for a simple function
def f(arg1: type1, arg2: type2 = default)-> rtype:
 """Docstring – optional – high level, plain
 English explanation of what the function
 does – the parameters it takes – and what
 it returns."""
 statements
 return return_value # returns None by default
Note: functions are first class objects. They have
attributes and they can be referenced by identifiers.
Note: positional arguments before named arguments.

Default arguments
Default arguments can be specified in a function
definition with a key=value pair. If an augment which has
been declared with a default value is not passed to the
function, the function will use the default argument.
def funct(arg1, arg2=None): pass
In this case, arg2 has the default value of None.
Note: default arguments are optional in the function call.
Positional arguments must be passed in the call.

	

Version 24 September 2021 - [[Draft – Mark Graph – mark dot the dot graph at gmail dot com – @Mark_Graph on twitter]] 8

Avoid mutable default arguments
Expressions in default arguments are evaluated when
the function is defined, not when it’s called. Changes to
mutable default arguments survive between calls.
def nasty(value=[]): # <-- mutable arg
 value.append('a')
 return value
print(nasty ()) # --> ['a']
print(nasty ()) # --> ['a', 'a']

def better(val=None): # <-- immutable arg
 val = [] if val is None else val
 value.append('a')
 return value

Type hints or type annotations
From Python 3.5, functions may be annotated with the
expected types for the parameters and the return value.
Identifiers can also be type-hinted at creation. There are
lots of abstractions in the typing module you can use.

from typing import List, Tuple
Vector = List[float] # a type alias you can use

def combo5(strings: List[str])-> Tuple[int, str]:
 number5: int = 5 # hint for an identifier
 return number5, ', '.join(strings)

The Python interpreter ignores these hints. They are not
enforced. But they help document your code.
They can be used by external type checkers (eg. mypy).

Hint: As a rule-of-thumb, you do not need docstrings nor
type-hints for short throw away scripts. But for code
others will read/use, for packages, or where unit tests
are necessary, they should be included in your code.

Lambda (inline expression) functions
Lambdas are small anonymous functions. They are
sometimes used for brevity when you would pass a
function argument to a function or method.

For example,
from functools import map, reduce, filter

def is_divisible_by_three(x):
 return x % 3 == 0

div3 = filter(is_divisible_by_three, range(1, 10))
becomes,
div3 = filter(lambda x: x % 3 == 0, range(1, 10))

Lambdas are typically used with the functions filter(),
map() and reduce(); and with the pandas methods
Series.apply(), DataFrame.groupby(), and the like.

Hint: Lambdas should be used sparingly. They can
result in very hard to read code.
Hint: Assigning a lambda to an identifier is a code smell.
Use def for named functions (it is better for debugging).

Writing you own functions (intermediate)

Function argument unpacking (*args, **kwargs)
*args and will match all the positional arguments and
**kwargs will match all the keyword arguments to a
function, that were not explicit in the function definition.
def my_args(arg1, *args, fish='dead', **kwargs):
 print(args, kwargs)

my_args(1, 'a', u=15, garbage=22)
prints: ('a',) {'u': 15, 'garbage': 22}
my_args(1, 'a', u=15, fish=5, garbage=22)
prints: ('a',) {'u': 15, 'garbage': 22}

Note: while "args" and "kwargs" are used by convention,
they are just identifier names; they are not special
names. In the next example the identifier "numbers"
captures all of the positional calling arguments into a list
(regardless of the number of positional arguments).

def my_sum(*numbers):
 return sum(numbers) # sum() takes an iterable

print(my_sum(1, 2, 3, 4, 5.2)) # prints 15.2
print(my_sum(1, 2, 3, 4, 5, 6+3j)) # prints 21+3j

Closures
Closures are functions that have inner functions (or
inner classes) with data fixed in the inner function (or
class) by the lexical scope of the outer function. They
allow for code reuse, with similar but different functions
(or classes) being created as needed. They are useful
for avoiding hard constants in the function call.

Wikipedia has an example derivative "function factory"
for any function (f) and value of Δx, using a closure.
from typing import Callable

def derivative(f: Callable, Δx: float)-> Callable:
 """Return a function that approximates
 the derivative of f using an interval
 of Δx, which is appropriately small."""
 def f_dash_at_x(x: float)-> float:
 return (f(x + Δx) - f(x)) / Δx
 return f_dash_at_x # from derivative(f, Δx)

f_dash_x_cube = derivative(lambda x: x**3, 1.0e-7)
f_dash_x_cube(10) # approx 300 (as f'(x) = 3x**2)

Identifier scope

Accessible identifiers (LEGB)
Not all identifiers are accessible from all parts of a
program. For example, identifiers declared within a
function are only visible within that function, from the
point at which it is defined until the end of the function.

When you access an identifier, Python looks for it
locally, then within the enclosing scope, then the global
scope of the module/file and finally the library of built-in
identifiers (LEGB: local, enclosing, global, built-in).

	

Version 24 September 2021 - [[Draft – Mark Graph – mark dot the dot graph at gmail dot com – @Mark_Graph on twitter]] 9

Note: The local scope only exists within functions. The
enclosing scope only exists for functions defined within
functions. (Closures use this enclosing scope).

Trap: your own functions and identifiers will hide the
built-ins, if they have the same name.

Trap: Also, if you assign an identifier within a function,
Python assumes that it is a local identifier. If you have a
global identifier with the same name it will be hidden
(unless you make it explicit with the global keyword).

def some_function():
 global the_global_identifier
 the_global_identifier = 5
Hint: modifying a global identifier from inside a function
is usually bad practice. It is a code smell.

Comprehensions, iterators and generators

List comprehensions (can be nested)
T_cubed = [x*3 for x in [5, 6, 7]] # [15, 18, 21]

z = [complex(x, y)
 for x in range(0, 4, 1)
 for y in range(4, 0, -1)
 if x > y]

z --> [(2+1j), (3+2j), (3+1j)]

Set comprehensions
a set of selected letters...
s = {e for e in 'ABCHJADCCHJ' if e not in 'AB'}
--> {'H', 'C', 'J', 'D'}

a set of tuples ...
s = {(x, y) for x in range(-1, 2)
 for y in range (-1, 2)}

Dictionary comprehensions
Conceptually like list comprehensions; but it constructs a
dictionary rather than a list
squared = {n: n*n for n in range(7)}
{0:0, 1:1, 2:4, 3:9, 4:16, 5:25, 6:36}

odd_sq = {n: n * n for n in range(7) if n % 2}
{1: 1, 3: 9, 5: 25}

next example -> swaps the key:value pairs, but
risks information loss with non-unique values
b = {val: key for key, val in odd_sq.items()}

An iterable object
The contents of an iterable object can be selected one
at a time. Strings, lists, tuples, dictionaries, and sets are
all iterable objects. Indeed, any object with the magic
method __iter__(), which returns an iterator.

An iterable object will produce a fresh iterator with each
call to iter().
iterator = iter(iterable_object)

Iterators
Objects with a next() or __next__() method, that:
• returns the next value in the iteration
• updates the internal note of the next value
• raises a StopIteration exception when done

Note: with the loop for x in y: if y is not an iterator;
Python calls iter() to get one. With each loop, it calls
next() on the iterator until a StopIteration exception.

x = iter('XY') # iterate a string by hand
print(next(x)) # X
print(next(x)) # Y
print(next(x)) # StopIteration exception

Generators
Generator functions are resumable functions that work
like iterators. They can be more space or time efficient
than iterating over a list, (especially a very large list), as
they only produce items as they are needed.

def fib(max=None):
 """ generator for Fibonacci sequence"""

 a, b = 0, 1
 while max is None or b <= max:
 yield b # ß yield is like return
 a, b = b, a+b

[i for i in fib(10)] # [1, 1, 2, 3, 5, 8]
Note: a return statement (or getting to the end of the
function) ends the iteration.
Trap: a yield statement is not allowed in a try clause.

Messaging the generator
def resetableCounter(max=None):
 j = 0
 while max is None or j <= max:
 x = yield j # ß x gets the sent arg
 j = j + 1 if x is None else x

counter = resetableCounter(10)
print(counter.send(None)) # 0
print(counter.send(5)) # 5
print(counter.send(None)) # 6
print(counter.send(11)) # StopIteration
Note: must send None on first send() call

Generator expressions
Generator expressions build generators, just like
building a list from a comprehension. You can turn a list
comprehension into a generator expression simply by
replacing the square brackets [] with parentheses ().
[i for i in range(10)] # list comprehension
(i for i in range(10)) # generator expression
Hint: if you want to see the sequence produced by a
generator expression, convert it to a list.
gen_exp = (x**2 for x in range(16) if not x % 5)
print(list(gen_exp)) # prints [0, 25, 100, 225]

	

Version 24 September 2021 - [[Draft – Mark Graph – mark dot the dot graph at gmail dot com – @Mark_Graph on twitter]] 10

Classes

Inheritance
class DerivedClass1(BaseClass):
 statements

class DerivedClass2(module_name.BaseClass):
 statements

Multiple inheritance
class DerivedClass(Base1, Base2, Base3):
 statements

Classes
Python has a multiple inheritance class mechanism that
encapsulates program code and data. Example follows:
import math

class Point:
 count = 0 # static class variable

 def __init__(self, x, y):
 """Instantiate with cartesian co-ords."""
 self.x = float(x) # instance variable x
 self.y = float(y) # instance variable y
 Point.count += 1

 def __str__(self):
 return f'(x={self.x}, y={self.y})'

 def to_polar(self):
 """Return tuple with polar co-ords."""
 r = math.sqrt(self.x**2 + self.y**2)
 θ = math.atan2(self.y, self.x)
 return r, θ

my_point = Point(1, 2)
print(my_point) # uses __str__() method
print(Point(0, 0).to_polar()) # (0.0, 0.0)
print(Point.count) # prints 2

Methods and attributes
Most objects have associated functions or “methods”
that are called using dot syntax:
object.method(*arguments, **keyword_arguments)

Objects also often have attributes or values that are
directly accessed without using getters and setters
(most unlike Java or C++)
instance = Example_Class()
print (instance.attribute)

The self
Class methods have an extra argument over functions.
Usually named 'self'; it is a reference to the instance. It
is not used in the method call; and is provided by Python
to the method. Self is like 'this' in C++ & Java

Public and private methods and variables
Python does not enforce the public v private data
distinction. By convention, identifiers and methods that
begin with an underscore should be treated as private
(unless you really know what you are doing). Identifiers
that begin with double underscore are mangled by the
compiler (and hence more private).

Magic class methods (not a complete list)
Magic methods begin and end with double underscores,
and they are known as dunders (or more formally as the
Python data model). They add functionality to your
classes consistent with the broader language.

Magic method What it does
__init__(self,[...]) Constructor
__del__(self) Destructor pre-garbage

collection
__str__(self) Human readable string for

class contents. Called by
str(self)

__repr__(self) Machine readable
unambiguous Python
string expression for class
contents. Called by
repr(self) Note: str(self)
will call __repr__ if
__str__ is not defined.

__eq__(self, other) Behaviour for ==
__ne__(self, other) Behaviour for !=
__lt__(self, other) Behaviour for <
__gt__(self, other) Behaviour for >
__le__(self, other) Behaviour for <=
__ge__(self, other) Behaviour for >=
__add__(self, other) Behaviour for +
__sub__(self, other) Behaviour for -
__mul__(self, other) Behaviour for *
__div__(self, other) Behaviour for /
__mod__(self, other) Behaviour for %
__pow__(self, other) Behaviour for **
__pos__(self, other) Behaviour for unary +
__neg__(self, other) Behaviour for unary -
__hash__(self) Returns an int when

hash() called. Allows class
instance to be put in a
dictionary

__len__(self) Length of container
__contains__(self, i) Behaviour for in and not in

operators

__missing__(self, i) What to do when dict key i

is missing
__copy__(self) Shallow copy constructor
__deepcopy__(self,
 memodict={})

Deep copy constructor

__iter__(self) Provide an iterator
__nonzero__(self) Called by bool(self)
__index__(self) Called by x[self]
__setattr__(self,
 name, val)

Called by
self.name = val

__getattribute__(self,
 name)

Called by self.name

__getattr__(self,
 name)

Called when self.name
does not exist

__delattr__(self,
 name)

Called by
del self.name

__getitem__(self, key) Called by self[key]
__setitem__(self, key,
 val)

Called by
self[key] = val

__delitem__(self, key) del self[key]

	

Version 24 September 2021 - [[Draft – Mark Graph – mark dot the dot graph at gmail dot com – @Mark_Graph on twitter]] 11

Decorators

Decorators
Decorators are a syntactic convenience that allows a
Python source file to say what it is going to do with the
result of a function or a class statement before rather
than after the statement. They are callable objects that
return a callable.

Decorators allow you to augment a function call and/or
the return process from a function with additional code.
You can write a decorator to (for example):

• validate the input values to a function;
• count function calls
• log to file the calls to a function
• caching the return values from a function
• see how long a function takes to run (below)
• call a function repeatedly (bottom this column)

from functools import wraps
import time

def timer(func):

 @wraps(func) # this line is optional
 def inner_timer(*args, **kwargs):
 start = time.time() # before
 ret_val = func(*args, **kwargs) # call
 secs = time.time() - start # after
 print(f'This took {secs:.1f} seconds.')
 return ret_val

 return inner_timer
Note: the @wraps decorator from functools allows us to
see the name, docstring and arguments of the passed
function (func). Without @wraps, the docstring, name,
and so would come from the inner_timer function.

You would then use this decorator as follows
@timer
def slow_function():
 return {x: x**5 for x in range(10_000_000)}

x = slow_function()
prints: 'This took 2.9 seconds.'

The above code block is an easier-to-read version of the
following block.
def slow_function ():
 return {x: x**5 for x in range(10_000_000)}

timed_slow_function = timer(slow_function)
x = timed_slow_function()
prints: 'This took 2.9 seconds.'

Decorators with parentheses
Decorators with parentheses are callable objects that
return a callable that returns a callable. They allow us to
pass arguments to the decorator (see example below).

from typing import Callable
from functools import wraps

def repeat(n: int)-> Callable:
 def rep_decorator(func: Callable)-> Callable:
 @wraps(func)
 def inner(*args, **kwargs):
 for _ in range(n):
 val = func(*args, **kwargs)
 return val # only last one returned
 return inner # from rep_decorator()
 return rep_decorator # from repeat()

@repeat(3)
def example():
 print('One line')

example() # is called 3 times
Note: more than one decorator can be applied to a
function. They are simply stacked above the function.
Stacked decorators are executed from bottom to top.

Built-in decorators
Python has many useful built-in decorators, including:
• The @classmethod and @staticmethod decorators

transform a method into a class level function.
• The @property decorator is used to customize

getters and setters for class attributes
• The @dataclass method builds boiler-plate code for

classes that primarily hold data.
from dataclasses import dataclass

Advanced Python

These notes are deliberately aimed at new and
intermediate programmers to Python. There are a host
of advanced Python features that you may wish to learn,
once you have progressed beyond these notes.
Advanced Python topics include:

• the Python data model
• abstract classes/methods and interfaces in Python
• metaclasses and the type type
• namespaces in Python
• writing modules and packages
• writing context managers
• using Cython to speed up Python
• calling C, C++, R, or Java from Python
• multi-threaded and multi-processor Python

	

Version 24 September 2021 - [[Draft – Mark Graph – mark dot the dot graph at gmail dot com – @Mark_Graph on twitter]] 12

See also …

You might also want to read:

• PEP 8 – Style Guide for Python Code –

https://www.python.org/dev/peps/pep-0008/
• PEP 20 – The Zen of Python –

https://www.python.org/dev/peps/pep-0020/
• PEP 257 – Docstring Conventions –

https://www.python.org/dev/peps/pep-0257/
• PEP 484 – Type Hints –

https://www.python.org/dev/peps/pep-0484/

