PDS_VERSION_ID = PDS3 RECORD_TYPE = STREAM OBJECT = TEXT PUBLICATION_DATE = 2006-03-28 NOTE = "Description of contents of CDR directory" END_OBJECT = TEXT END The CDR directory is present in the EDR archive volume. It contains CRISM VNIR and IR "Calibration Data Records" or "CDRs". CRISM uses a collection of CDRs to convert data from raw DNs to units of radiance or I/F. CDRs are created in two ways: (a) One type of calibration file, for example the wavelength calibration, is either invariant or expected to change only infrequently. These files are stored in directories named using a 2-letter acronym for the contents of the file. (b) The other type of calibration file is a snapshot of some attribute of the instrument that is time-variable, for example the thermal background measured by the IR detector. These files are stored in directories named YYYY_DOY, each one of which contains subdirectories containing distinct types of calibration files. There are two types of calibration files. CODMAC level 4 CDRs (CDR4s) are in image format, and CODMAC level 6 CDRs (CDR6s) are text files in ASCII format. Both types have a file name that encodes the time at which they are applicable, and the configuration of the data used to derive them (detector, frame rate, binning, wavelength filter, exposure time parameter, etc.). YYYY_DOY/BI directory: This directory contains CDR4s representing measurements of the response of each detector to zero signal, i.e., the detector bias. These are measured as dark frames for the VNIR detector. For the IR detector, these are the zero exposure-time intercept of a fit of dark measurements taken at several exposure times. For each detector there are separate files for each frame rate, wavelength filter, and binning state, time-stamped for their mean time of acquisition. YYYY_DOY/BK directory: This directory contains CDR4s representing thermal background measured by the IR detector. These are measured as dark frames. There are separate files for each frame rate, exposure time, and binning state, time-stamped for their mean time of acquisition. YYYY_DOY/BP directory: This directory contains CDR4s representing bad pixels. There are separate files for each frame rate, exposure time, wavelength filter, and binning state, time-stamped for their mean time of acquisition. YYYY_DOY/SP directory: This directory contains CDR4s representing sphere output in DN/ms at the sphere's closed-loop setpoint. There are separate files for each sphere bulb. For the VNIR all data are taken at 1 Hz, but there are versions for each binning state. For the IR there are separate versions for each frame rate, wavelength filter, and binning state. Both the VNIR and IR files are time-stamped for their mean time of acquisition. YYYY_DOY/ST directory: This directory contains a table of CRISM low-rate telemetry in raw counts, from the beginning of a UTC calendar day to its end. This is used in preference to the telemetry attached to each image for correction of thermal effects, because of uncorrectable artifacts in the raw values of critical temperature measurements in the image headers. YYYY_DOY/UB directory: This directory contains CDR4s representing pixel-by-pixel uncertainties in VNIR bias or IR background images. There are separate files for each frame rate, exposure time, wavelength filter, and binning state, time-stamped for their mean time of acquisition. This product is not a part of the nominal data processing pipeline and instead is used to monitor detector health. YYYY_DOY/ATF directory: This directory contains a table of EDRs containing scene data and the corresponding EDRs containing time-dependent calibration measurements needed to calibrate the scene EDRs. It is used to process calibration EDRs to CDRs, and scene EDRs to TRDRs. If there is a discrepancy between the actual EDRs used for calibration and the predicted EDRs (in the BTF directory), the TRDRs resulting from scene EDRs are quality-flagged. YYYY_DOY/BTF directory: This directory contains a predicted table of EDRs containing scene data and the corresponding EDRs containing time-dependent calibration measurements. It is constructed from uplinked commands. AS directory: This CDR6 gives the maximum expected 14-bit scene or sphere 14-bit DN level (units from the detector, after correction for the pixel processing table and subtraction of bias) for core observation types to be made by CRISM. There are 5 core observation types defined by combinations of frame rate, exposure time, and scene: 1 Hz observation, exposure parameter 27, observing the internal integrating sphere; 3.75 Hz, exposure parameter 301, observing a nominally non-ice region of Mars; 3.75 Hz, exposure parameter 147, observing a potentially ice-containing region; 15 Hz, exposure parameter 425, observing any region; and 30 Hz, exposure parameter 425, observing any region. The values given here are used with bias images in the YYYY_DOY/BI directories to generate masks of probably bad pixels (in the YYYY_DOY/BI directories). BS directory: This CDR6 gives the amplitude of the bias step correction for each detector as a function of frame rate and quadrant. The bias step is a step function in detector bias that occurs at a row number (band) correlated with exposure time parameter. BW directory: This CDR6 gives the parameters to calculate the spectral profile for each wavelength bin averaged over IR columns 270-369 or VNIR columns 260-359. This represents the "sweet spot" of each detector at which spectral smile and keystone are minimum, and is the preferred detector location for extraction of overlapping data for analysis of emission phase functions. CM directory: This CDR4 gives the along-slit angle measured from slit center for each detector. It is similar to the SPICE Instrument Kernel. There is a different version for each detector, wavelength filter, and binning state. DB directory: This CDR6 gives the correction to detector bias for changes in detector temperature since the last bias measurement, as a function of frame rate and quadrant. DM directory: This CDR4 is a mask of detector dark columns, scattered light columns, and scene columns for each detector. There is a different version for each wavelength filter and binning state. EB directory: This CDR6 gives the correction to detector bias for differences in focal plane electronics temperature since the last bias measurement, as a function of frame rate and quadrant. GH directory: This CDR6 gives the scaling factors needed for each frame rate to calculate and subtract the inter-quadrant electronics ghost in each detector, using bias-corrected signal. HD directory: This CDR6 gives the coefficients for correcting raw housekeeping for perturbations due to changes in lamp or cooler state and frame rate. There is one file for both detectors. HK directory: This CDR6 gives the coefficients to convert housekeeping parameters from raw counts to physical units. HV directory: This CDR6 gives the coefficients to correct housekeeping voltages for perturbations due to changes in current. LC directory: This CDR6 gives the coefficients to correct bias-subtracted DN from each detector at each frame rate for non-linearity in detector response. LI directory: This CDR6 gives 8 to 12 bit lookup tables (inverse of 12 to 8). These are used to restore 8-bit to 12-bit DN values. LK directory: This CDR6 gives 12 to 8 bit lookup tables loaded in the CRISM instrument. LL directory: This CDR4 contains matrices to remove estimated leaked higher order light in the IR detector, by scaling shorter-wavelength signal and subtracting it from longer-wavelength signal. NU directory: This CDR4 is a time-tagged, row-normalized measurement of detector nonuniformity. There is one version for each binning state, wavelength filter, and frame rate. It is only created for the VNIR detector. PP directory: This CDR6 contains the gain and offset to use for each row to convert 12-bit DNs to the native 14-bit DNs produced by each detector, and the 12 to 8 bit lookup tables used for each detector row (band) when lossy compression is employed. PS directory: This CDR4 is used for nearest neighbor spectral resampling. It gives the number of detector rows (bands) by which to shift each column (sample) of an image to minimize the effects of spectral smile. The effect of the pixel shift is to restore the wavelength at a detector element to within one-half detector element of the wavelength in the central columns of the detector. (The wavelength and spectral bandwidth in the central columns are given in the SW and BW directories respectively.) There is a different version for each detector, wavelength filter, and binning. RA directory: This CDR4 contains the ratio of focal plane lamp illumination to an external flat field, normalized on a row-by-row basis. This is a contingency and not part of the normal calibration pipeline, so its creation is TBD. There is a different version for each detector, wavelength filter, and binning. RF directory: This CDR4 contains a nearest-neighbor resampled solar flux image. It is related to the "native" solar flux images in the SF directory by the pixel- shifting given in the PS directory. There is a different version for each detector, wavelength filter, and binning. RW directory: This CDR4 contains a nearest-neighbor resampled wavelength image. It is related to the "native" wavelength images in the WA directory by the pixel- shifting given in the PS directory. There is a different version for each detector, wavelength filter, and binning. SB directory: This CDR4 contains the spectral bandpass width for each detector element. There is a different version for each detector, wavelength filter, and binning. SF directory: This CDR4 contains solar flux at 1 AU for each detector element. There is a different version for each detector, wavelength filter, and binning. It is used together with the solar distance given in an EDR or TRDR label to calculate I/F. SH directory: This 2-layer CDR4 is used to correct flight measurements of the onboard integrating sphere for effects of shutter position irreproducibility. Layer 0 is a corrected sphere image from ground radiometric calibration in units of 14-bit DN. Layer 1 is a shutter mirror non-repeatability correction image, a multiplicative correction that gets scaled by the ratio of layer 0 to the measured flight sphere image. There is a different version for each detector, wavelength filter, and binning. SL directory: This CDR6 gives the 14-bit DN at which each detector is saturated, as a function of quadrant and frame rate. SS directory: This 3-layer CDR4 gives sphere spectral radiance at the closed-loop set point for each sphere bulb, as pixel by pixel coefficients to a 2nd order polynomial function of sphere temperature. There is a different version for each detector, wavelength filter, and binning. SW directory: This CDR6 gives the center wavelength for each wavelength bin averaged over IR columns 270-369 or VNIR columns 260-359. This represents the "sweet spot" of each detector at which spectral smile and keystone are minimum, and is the preferred detector location for extraction of overlapping data for analysis of emission phase functions. TD directory: This CDR4 gives temperature dependence of detector responsivity, as pixel by pixel coefficients to a 2nd order polynomial function of detector temperature. There is a different version for each detector, wavelength filter, and binning. UR directory: This CDR6 gives uncertainty in absolute and relative sphere signal, for each bulb. This product is not a part of the nominal data processing pipeline and its creation is TBD; it is intended for end users of calibrated data as an indication of limits to data interpretation. VL directory: This CDR6 This file gives the 14-bit DN at which each detector - ON AVERAGE - is saturated. It is used together with the predicted limiting case expected 14-bit scene DN levels (in the AS directory) to produce bad pixel maps. It also gives additional criteria for defining a bad pixel, thresholds for noise and relative pixel response. WA directory: This CDR4 gives the center wavelength for each detector element. There is a different version for each detector, wavelength filter, and binning. WV directory: This CDR6 gives the table of detector rows (bands) loaded into wavelength filters 0-3. There is one version for each detector. The file naming convention for level-6 CDRs is as follows. (ProductType)(Level)_(Partition)_(Time)_(Product)_(SensorID)_version.(Ext) where: Product Type = CDR Level = 6 Partition = n, partition of the spacecraft clock. Time = nnnnnnnnnn, spacecraft start time of applicability of data product; units are spacecraft clock counts, in units of whole seconds. Product = nn, acronym describing data product from Table 3-3 Sensor ID = S or L (or J=joint) Version = 0, 1,..., 9, a,..., z Ext = TAB The file naming convention for level-4 CDRs is as follows. (ProductType)(Level)(Partition)(Time)_ (Product)(FrameRate)(Binning)(ExposureParameter)(WavelengthFilter)(Side)(Sens orID)_ version.(Ext) where: Product Type = CDR Level = 4 FrameRate = n, rate in Hz at which data are taken (0=1 Hz, 1=3.75 Hz, 3=156 Hz, 4=30 Hz, 5 = N/A) Binning = n, number of spatial pixels binned (0=unbinned, 1= 2x binned, 2= 5x binned, 3= 10x binned, 4=N/A) Exposure parameter = nnn, an integer 1-480 indicating commanded exposure time in units of (inverse frame rate)/480; 000 if inapplicable Wavelength filter = n, and integer 0-3 indicating which onboard menu of rows of the detector are represented Side = #, 1 or 2 for focal plane or sphere bulbs; or 0 if N/A Ext = IMG The tables in the YYYY_DOY/ATF and YYYY_DOY/BTF directories have a different file naming convention, as follows. (Product)_(Sensor)_(YYYY)_(DOY)_version where: Product Type = BTF for predicted or ATF for actual Sensor = VN or IR YYYY = year DOY = day of year Version = nn